
Self-Compressed Nano GPT

József Konczer jozsef.konczer@imgtec.com Timothy Gale timothy.gale@imgtec.com James Imber james.imber@imgtec.com

Results

Methodology Conclusion

References

References:

[1] Cséfalvay, Sz.; and Imber, J. Self-Compressing Neural Networks arXiv:2301.13142v2

[2] Cséfalvay, Sz.; Self-Compressing Neural Networks

https://blog.imaginationtech.com/self-compressing-neural-networks

[3] Défossez, A.; Adi, Y.; and Synnaeve, G. Differentiable Model Compression via Pseudo Quantization Noise

arXiv:2104.09987v3

[4] Han, S.; Mao, H.; and Dally, W. Deep Compression arXiv:1510.00149v5

[5] Vaswani, A.; Shazeer N.; Parmar N.; Uszkoreit J.; Jones L, Gomez A. N.; Kaiser L.; Polosukhin I.

Attention Is All You Need arXiv:1706.03762

[6] Karpathy, A. nanoGPT https://github.com/karpathy/nanoGPT

[7] Karpathy, A. Let's build GPT: from scratch, in code, spelled out.

https://www.youtube.com/watch?v=kCc8FmEb1nY

[8] Karpathy, A. TinyShakespeare https://huggingface.co/datasets/tiny_shakespeare

Consider a linear autoencoder which maps 3 input dimensions to N latent dimensions and back:

Our demonstration focused on reducing neural network size, which is a major driver of neural

network execution time, power consumption, bandwidth, and memory footprint. A key challenge is to

reduce size in a manner that can be exploited readily for efficient training and inference without the need

for specialized hardware. We applied Self-Compression: a simple, general method that simultaneously

achieves two goals: (1) removing redundant weights, and (2) reducing the number of bits required to

represent the remaining weights. This was achieved using a generalized loss function to minimize overall

network size.

Motivation

Copyright © 2023 Imagination Technologies Ltd.

Scaled up model with 10.8 M parameters

Uncompressed model: 7.08 M compressible

parameters

Highly compressed model: 0.55 M compressed parameters

7.8% weights remained, 0.60% bits (relative to 32bit float)

Advantages:

• Fewer weights in the final network;

• Fewer bits in the remaining parameters (depending on the target device);

• Reduced training and execution time;

• Frees the network designer from manually optimizing architectural hyperparameters such as layer widths

and bit depths;

• No requirement for special hardware to take advantage of most optimizations (e.g., no need for sparse

matrix multiplication or support for hash functions [4]).

Challenges:

• Compressing networks in this way can be challenging. We call one difficulty that we came

across irreversible forgetting;

• The network is continuously trying to remove (“forget”) channels that are not necessary to produce a low

error at that moment in training. However, this process could erroneously remove parts of a network that

are useful, albeit not heavily used during processing of recent minibatches.

Future work:

• Pruning whole Heads in the Transformer;

• Quantization of Attention layers;

• “Linguistic phase transition” might be detected.

Scaled down Nano GPT model with 212 K parameters,

(from which 131 K parameters are quantized)

Our special thanks go to Szabolcs Cséfalvay and Cagatay Dikici. We would also like to thank our other

colleagues at Imagination Technologies who supported this work. For suggesting the topic and providing

invaluable help Anita Verő is owed special gratitude.

Image classification results from [1,2] and [3]

Self-compressing training of a linear autoencoder with 3 input channels

Quantized part in an attention block [5] implemented in Nano GPT

Linear autoencoder

Nano GPT illustration from [6] and [7]

Quantization:

Forward step and backprogataion of quantization parameters (base and exponent) [1,2]

Attention layers

Fully connected layers

We used a general method to determine the optimal number of bits and to encode weights or

activations using gradient descent. For this we used a quantization that is differentiable in the

number of bits [1,2]:

	Slide 1: 6

