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Consider a linear autoencoder which maps 3 input dimensions to N latent dimensions and back:

Our demonstration focused on reducing neural network size, which is a major driver of neural 

network execution time, power consumption, bandwidth, and memory footprint. A key challenge is to 

reduce size in a manner that can be exploited readily for efficient training and inference without the need 

for specialized hardware. We applied Self-Compression: a simple, general method that simultaneously 

achieves two goals: (1) removing redundant weights, and (2) reducing the number of bits required to 

represent the remaining weights. This was achieved using a generalized loss function to minimize overall 

network size.

Motivation
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Scaled up model with 10.8 M parameters

Uncompressed model: 7.08 M compressible 

parameters

Highly compressed model: 0.55 M compressed parameters

7.8% weights remained, 0.60% bits (relative to 32bit float)

Advantages:

• Fewer weights in the final network;

• Fewer bits in the remaining parameters (depending on the target device);

• Reduced training and execution time;

• Frees the network designer from manually optimizing architectural hyperparameters such as layer widths 

and bit depths;

• No requirement for special hardware to take advantage of most optimizations (e.g., no need for sparse 

matrix multiplication or support for hash functions [4]).

Challenges:

• Compressing networks in this way can be challenging. We call one difficulty that we came 

across irreversible forgetting;

• The network is continuously trying to remove (“forget”) channels that are not necessary to produce a low 

error at that moment in training. However, this process could erroneously remove parts of a network that 

are useful, albeit not heavily used during processing of recent minibatches.

Future work:

• Pruning whole Heads in the Transformer;

• Quantization of Attention layers;

• “Linguistic phase transition” might be detected. 

Scaled down Nano GPT model with 212 K parameters,

(from which 131 K parameters are quantized)
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Image classification results from [1,2] and [3]

Self-compressing training of a linear autoencoder with 3 input channels

Quantized part in an attention block [5] implemented in Nano GPT

Linear autoencoder

Nano GPT illustration from [6] and [7]

Quantization:

Forward step and backprogataion of quantization parameters (base and exponent) [1,2]

Attention layers

Fully connected layers

We used a general method to determine the optimal number of bits and to encode weights or 

activations using gradient descent. For this we used a quantization that is differentiable in the 

number of bits [1,2]:
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