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Introduction
”Probability is the very guide of life”, however, there are many ways to interpret the concept, and its guidance.
The Bayesian interpretation suffers from the lack of justification of prior choices. There have been many attempts to find appropriate

principles for Objective Bayesianism [1, 2], besides the construction of a Subjective Bayesian alternative pioneered by Savage and de
Finetti.

Von Neumann’s minimax theorem and the framework of game theory served another possible justification of inference methods. The
1950 book of Abraham Wald [3] defines inference as an optimal strategy followed by “Experimenter” who plays a zero sum game against
“Nature”. In this early work only a quadratic loss function was analysed, however, independently, R. L. Kashyap investigated zero sum
games with relative entropy loss function in the 70’s [4, 5].

Unfortunately, the game theoretic interpretation did not gain popularity in statistics, but similar concepts appeared in decision theory
called Maxmin Expected Utility (MEU) [6] and in Machine Learning known as Generative Adversarial Network (GAN) [7].

My main aim is to revitalize and further expand the concept of a loss function based inference, which could treat many different
areas, such as decision theory, statistical inference, data compression, statistical physics and quantum information theory in one coherent
framework.

If we extend the framework to more interactive data acquisition procedures, then it can give a non circular definition for the
experimenter’s subjective probability concept, who gathered some data, have a model and objectives, but faces an uncertain situation.

Bayesian methods are becoming increasingly popular in Machine Learning and engineering applications due to sufficient computational
power. However, the choice of prior is often not well justified, which can cause problems mainly in data scarce situations. A loss function
based approach can increase accuracy on small data sets. It would also improve the accuracy of prior dominated models, which are
typically the ones having many parameters.

Formal definition of the model

Figure 1: Probabilistic model M

To define an inference game, one first needs a probabilistic model, which contains a data
domain D, a target set T , a parameter set Θ (for the sake of simplicity these domains can be
defined as finite dimensional manifolds), a parameter dependent PDF function on D, f(.|θ)
and a parameter dependent PDF function on T , g(.|θ) (see Figure 1). As an action, for any
data point x ∈ D, the experimenter can construct a data dependent predictive PDF on T ,
h(.|x). (This move represents the inference made by the experimenter.) The game’s payoff
function will be a functional L(.||.) from a pair of PDF-s on T to R, and the experimenter’s
loss will be L(g(.|θ)||h(.|x)) if the “real” distribution in the target space is g(.|θ), while we
predicted an h(.|x) distribution based on our collected data x ∈ D. The three spaces and
two functions define a statistical model M = {D, T ,Θ, f, g} and a statistical model together
with a loss functional define an inference game G = {M, L}. In this game “Nature” can use
a mixed strategy π to choose from the parameter set Θ i.e. π is a distribution on Θ, and the
experimenter can pick any predictive function h to minimize its expected loss, defined by:

∆(π, h) =

∫
dθ π(θ)Eξ∼f(.|θ) [L(g(.|θ)||h(.|ξ))] (1)

(If the loss functional is convex in the second variable, then the optimal strategies for the experimenter are pure.)
An especially important case is when the loss functional equals to the Kullback–Leibler divergence of “real” and predicted distributions

L(g(.|θ)||h(.|ξ)) = DKL(g(.|θ)||h(.|ξ)). If we choose this special loss functional, then the optimal predictive function will be h∗π precisely
the distribution which would appear after Bayesian inference, taking π as a prior on the parameter space. Furthermore, according
to the worst case principle we expect that “Nature” maximizes our loss, using a mixed strategy π∗, even after we use the optimal
prediction distribution h∗π∗ . This π∗ prior can be viewed as an equilibrium strategy for a zero sum game played between “Nature” and
the experimenter. (In case of relative entropy loss functional, the loss can be interpreted as wasted bits between the optimal protocol
constructed using g(.|θ) and a suboptimal protocol derived from h(.|x).)

There are two natural choices for the target space: the data centered (or Aristotelian) and the model centered (or Platonic) approach.
If we investigate a probabilistic model, where n i.i.d. variables can be observed, given a parameter dependent PDF on Ω, f0(.|θ), a data
centered agent would be interested in the most accurate prediction of the distribution of the observable data in the future. After n
measurements M = {D = Ωn, T = Ω,Θ, f = fn0 , g = f0}. On the other hand, a model centered agent would be interested in the
inference of model parameters after the measurements M = {D = Ωn, T = Θ,Θ, f = fn0 , g = δ} 1.

1In the continuous case, one needs to specify the natural coordinates, in which the Dirac-delta function is understood. A natural (and
also reparametrization invariant) choice is the Normal coordinates respect to the Fisher information metric.
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Already analyzed toy models
I have already started to explore the inference schemes, which can be derived using the inferential game framework. I investigated

the simplest possible toy models, where exact calculations and proofs can be made.
I calculated the optimal inferences using relative entropy loss functional in case of finite hypothesis testing problems on binary strings,

Bernoulli model, Gauss distributions with unknown mean and variance, and the continuous taxi-cab problem.
In case of binary strings, using an appropriate loss function I was able to derive two very similar versions of Solomonoff’s inductive

inference.
I generalized the framework to optimal experimental design problems (where the experimenter can choose between possible measure-

ments), and also to the quantum case. The simplest nontrivial case of hypothesis testing of a one qbit system with two alternatives has
also been defined and numerically solved.

Proposed work
I would like to continue to gradually explore more complex toy models, e.g., the higher dimensional versions of classical estimation

problems, analyzing Markov Chains, Gaussian Processes, Bayesian Linear/Polynomial Regression, and Bayesian Neural Network.
My plans are the following: (1) Explore the effect of the loss functional on the equilibrium inference scheme, and construct an

axiomatic framework for loss functionals, suitable for scientific purposes. (2) Understanding frequentist methods as strategies for scoring
loss functions. (3) Extend the domains to functional spaces and investigate how the framework could generate empirical distribution
functions from data coming from (an unknown) continuous distribution. (4) Use the framework to construct optimal coding protocols
(having a probabilistic model of the data, containing uncertain priors), and use these protocols together with the minimum description
length (MDL) principle to define and solve model selection problems. (5) Give a non circular interpretation of subjective probability of
agents using game theoretical situations. (6) Give an evolutionary interpretation of Bayesian reasoning based on multiplicative betting
opportunities using Kelly criterion. (7) Define the problem of Inductive Logic, described by Keynes and Carnap, as a search for the
shortest axiom system consistent with true theorems in a formal language, put it into a game theoretic framework, and explore the features
of inference methods, optimal for this game. (8) Interpret the methods of statistical physics as optimal strategies in inferential problems.
(9) Analyse the framework, when the experimenter can choose between possible experiments, exploring adaptive optimal strategies and
heuristics. (10) Generalize and explore the framework suitable for quantum information theory. (11) Investigate appropriate heuristics,
iterative methods and approximative inference schemes suitable for complicated, non exactly solvable models. (12) Generalize the concept
for Reinforcement Learning, by assuming that the choice of the reward function was made by “Nature” as well, investigate simple toy
models, e.g., Two-armed Bandit, and explore how the choice of objectives changes the agent’s behaviour.

During the PhD programme, I am planning to engage in multidisciplinary collaborations i.e. with mathematicians, statisticians,
economists, computer scientists and physicists, to explore the topic from many sides, and strengthen the coherence between methods
used in these fields.

Possible applications
The game theoretic approach, besides serving as a philosophical basis for inference and treating many different procedures in one

coherent framework, can also provide effective methods for making predictions without overfitting, and criteria for model selection
problems.

The framework can be generalized to other areas, where Bayesian approach is not straightforwardly applicable, e.g., quantum
information theory. Furthermore, it can help to assist decisions from gathered data, where different normative considerations can be
relevant e.g., in politics, economics and social sciences. [8]
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